
Kumar & Kumar International Journal on Emerging Technologies 11(3): 417-421(2020) 417

International Journal on Emerging Technologies 11(3): 417-421(2020)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Scheduling of Tasks (Cloudlets) in Heterogeneous Processing Cloud
Environment

Nishant Kumar
1
and Raj Kumar

2

1
Assistant Professor, Department of Computer Science & Engineering,

GKV, Haridwar (Uttarakhand), India.
2
Associate Professor, Department of Computer Science,

GKV, Haridwar (Uttarakhand), India.

(Corresponding author: Nishant Kumar)
(Received 24 February 2020, Revised 16 April 2020, Accepted 18 April 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Scheduling in cloud environment is a big challenge, it has two flavors in cloud environment one
to schedule the placement of the virtual machines (VM) and second is the placement of cloudlet or tasks in
the right virtual machine for the fast execution. In first type of scheduling to save the energy in the
DataCenter it is always a good idea to re-arrange the running VM’s on the underlying physical machines, so
the underload physical machine can go to sleep to save energy. So, the assignment of the VM from the
underloaded physical machine to other is a challenge. In second the placement of cloudlet to the VM for
execution, the decision to VM is crucial. In DataCenter, the underlying environment is heterogeneous, it is a
challenge to use all the VM which are now old and new high-end specs VM. So, balancing the tasks
assignment is challenging. In the proposed work the placement of the tasks is taken up, the tasks are picked-
up for execution on the FCFS basis and our algorithm assigns all the tasks to the VM which is providing the
minimum execution time. It calculates the time of execution from all the VM available and calculates the time
to finish the previous assigned or under execution tasks to find the minimum execution time. We will see the
algorithm working in load scenarios.

Keywords: Cloud Computing Scheduling, CloudSim, Task Scheduling, Cloudlet Scheduling.

Abbreviations: VMs, Virtual Machines; CT Completion time; QCT Queue Completion Time, ET Estimated Time, LC
Length of cloudlet; MIPS Million Instruction Per Second; MCT Minimum Completion Time; BW Bandwidth.

I. INTRODUCTION

In the recent year, it has seen that the cloud computing
technology is being adopted by many companies for its
cost and resource provisioning model. The trust by the
companies in the technology has made the cloud
service providers to build a bigger datacenter. To gain
the trust and confidence in the technology, availability
and security of the data are the key factors, and slow
part of continuous research. A technology not only
raises the issues for the data security or availability, but
it also affects the living of the common man.
In the current scenario cloud computing is the only way
to provision the resources virtually from anywhere.
Many DataCenters established by the big players (like
Google, IBM, Microsoft and Yahoo) of industry and
providing all types of cloud services (including software,
platform and infrastructure as a service) for the end user
and their clients. DataCenters uses virtualization to
provide complete utilization of servers to save the
energy but to fulfill the needs, the size of the datacenter
is very big having thousands of physical servers running
all the time to serve all. A small change in the power
consumption leads in a big amount of saving the
energy.
To improve efficiency and performance further it is must
to investigate the physical components and software
architectures. One such scope of improvement is the
scheduling algorithms. Scheduling comes in largely in
two methods in cloud computing, one to schedule the

placement of the virtual machines (VM) and second is
the placement of cloudlet or tasks in the right virtual
machine for the fast execution.
Algorithms plays a vital role in assigning the task or
cloudlets to VM (a job in cloud) for execution. The
management of virtual machines for the execution of the
tasks needs to be efficient as it must comply with
optimal resource utilization and faster execution.
Balancing in the allocation of task to the VM is important
this can drastically improve the performance.
Datacenters are increasing its capacity to accommodate
more users and to provide the latest technology to the
consumer. In this scenario various new physical
machines are adding up with the faster execution
speeds. So, it has become a heterogeneous
environment where machines are having different
capacities. Execution of the tasks on the machines
which works fast will have the fast execution and less
completion time of the cloudlet or tasks. In this scenario
the factor completion time is considered as the key
factor to achieve by scheduling.
The scheduling algorithm for cloud computing is
different from the traditional scheduling algorithms.
According to the architecture the scheduling is required
to assign the virtual machine (VM) to a task which is in
the queue for the execution. The process of assigning is
not limited to the assignment only if the all available
running VM are occupied then, a new instance of the
VM will be initiated for the task assignment and
completion [1].

e
t

Kumar & Kumar International Journal on Emerging Technologies 11(3): 417-421(2020) 418

II. RELATED WORK

In the past much work has been done in the field of
scheduling in cloud computing and has been suggested
various model to save energy earlier, to understand the
scheduling in cloud computing it is needed to study
those approaches.
Managing the resources in the cloud environment is the
key to save the energy. If the resources are not
managed properly, can lead large amount of memory
consumption [2]. Scheduling the virtual machine onto
the computer nodes is challenging task specially when
there are multiple objectives other than QoS like
reduction in request response time, workload balancing,
priority-based task, deadline based response to
maintain the DataCenter low-power mode. To increase
the response time hybrid energy efficient scheduling
approach seems better which is the combination of pre-
power technique and least load first [3]. Considering the
physical servers are running in low power mode by
default in which the server goes down when not in use
and boots up when a resource demand. The lag in-
between to resource demand and boot-up increases the
response time. The issue and suggested pre-power
technique, which is whenever servers left capacity is
less than, it immediately boots up the server, when the
left capacity in ample amount then it shutdowns the
system to save the power [3].
Furthermore, scheduling is not only limited to the
assigning the tasks to the VM, it also needs to work with
job scheduling and its fairness in the distribution of the
CPU time. Xu et al., points out the fairness in allocation
and used Berger Model of distributive justice based on
expectation states where fairness can be judged by
every individual through distribution relationship
comparison [4]. Dakshayini & Guruprasad added priority
with jobs and maintains the high throughput of with 99%
service finishing rate. It examines the time to be taken
and service cost of the task and based on the trade-off
takes the decision and sets priority [5]. Delavar et al.,
shows the different algorithm where a job is divided in
two sub-parts and calculate request time of job and
acknowledge time of the job separately. The results
show the increase in system performance, they named
the algorithm RSDC [6]. The proposed research refers
the problem of task duplication in heterogenous
environment and a pair-based task scheduling to
minimize the layover time. The proposed algorithm PTS
considered both lease time and converse lease time to
make a scheduling decision and used transfer time to
make the proposed algorithm more realistic [7].
Another cause of in-efficiency and delays is imbalanced
load in DataCenters which increases the complexity.
Chen et al., introduced the algorithm, a load balanced
Min-Min scheduling algorithms and results shows the
decrease in makes pan and high resource usage [8]. In
the same array Devipriya & Ramesh proposed an
improved max-min algorithm which enhances the
performance by reducing the response time and
completion time based on RASA with max-min strategy.
It assigns the smaller tasks to the faster resources and
longer tasks to the slower processor, but this algorithm
has drawback of lower make span in comparison to the
Max-Min algorithm.

QoS in cloud has added few more parameters from
which a parameter trust, is a big concern for the most of
the companies to shift their work from the traditional
system to the cloud, moving the data out off the campus
and giving to the cloud companies raised concern of
trust under two categories the privacy of data and said
execution speed. Wang et al., taken up the trust in
execution speed, suggested the Bayesian Cognitive
Inspired trust model with dynamic scheduling algorithm,
Cloud-DLS. A simple method to gain the trust is high
execution ratio, as the execution increases the trust
increases [10].
Now computing has taken a turn, where QoS factors are
sufficient to bring the efficient computing, but this didn’t
approach to the deadline-based tasks or workflow-
based tasks. Tasks needs to be aligned with the
deadline, this gives a scope of little delay also, if one
work completes fast then other may have little extra time
to spare and that is where actually the efficiency can be
achieve. In the heterogeneous environment there are
physical machines of all the capabilities. If a task is
assigned to a faster machine then the other task can be
assigned to a relatively slower machine, in-order to fully
utilize all physical servers. The assignment of the
workload based on deadlines known as workflow. So,
the workflow scheduling is required to be optimized.
Singh et al., proposed an energy efficient workflow
scheduling (EEWS) algorithm which scores a better
makespan while considering the real-world scheduling
constraints like the performance variability of VMs, VM
boot and shut-down time [11].
Krishnadoss & Jacob considered the makespan and
cost as an important factors for optimization factors and
merged two algorithm to propose a new algorithm
named as Oppositional Cuckoo Search Algorithm
(OCSA), which takes input the number of task, number
of host machine, number of virtual machine and
provides makespan and cost as output. It uses the
fitness function and rank the solution in last to find the
best solution [12].
Wang et al., points the main objective the execution
time and delays, it uses the catastrophic genetic
algorithm for the decision to transfer the task and
quantifies total task completion time and penalty factor
as a fitness function [13].

III. MODEL AND FORMULATION

A. Queuing System Models
Consider queuing system M/M/C:/∞/∞ with c parallel
servers (for practical 4 parallel servers considered) and
considering infinite queue length and infinite population.
Because this is a heterogeneous system and all system
has own capacity so the MIPS cannot be fixed.
Considering that all the jobs coming for the service will
get the system or execution time. According to the
poison theory
λ

�µ
< 1

 (1)

where � is the arrival rate, � is the service rate and c is
the number of available servers.
λ� = λ (2)
n represent the jobs, the service rate may vary as per
the jobs are coming. When the jobs are less than the
servers available, the service rate will be

Kumar & Kumar International Journal on Emerging Technologies 11(3): 417-421(2020) 419

µ
�

= nµ n < � (3)

If the jobs are more than the server and there will be
some queue and service rate will be
µ

�
= cµ n ≥ c (4)

Considering when there is no one in the system and all
the servers are free, in this scenario as any job will
come there will be no queue time.

�
 =
1

∑
(
λ

µ
)�

�!

���

 +

(
λ

µ
)�

�!

�

��
λ

�µ

 (5)

when there are n jobs in the system, and are less than
the available server then there will be no queue

�� = (
λ

µ
)� �

�!
�
 n<c (6)

when there are n jobs in the system, and there are more
jobs than the server. In that scenario to predict the when
the job will get the system

�� =
λ

�

�! µ�����
�
n ≥ c

 (7)

B. Scheduling Policies
A scheduling policy, denoted by π, determines the task
assignment in the system. The scheduling decisions are
made based on the execution time and priority with the
assumption that pre-emption is allowed. Hence if a task
is being executed by the server which is running slow
and not matching the required finish time, then it can be
shifted to other machine for faster execution when faster
machine is available. It can also be paused for the
execution of other task having higher priority.
A policy is said to be non-anticipative, if the scheduling
decisions are made without using any information about
the future job arrivals. It is said to be anticipative, if it
has the information of future arriving jobs. For periodic
and pre-planned services, future jobs arrival can be
predicted in advance. The goal is to design the low
complexity, non-anticipated scheduling policies.

C. Wait Metrics
If job i with high priority comes then it will be assigned to
the faster server which can execute task in minimum
time and current job j will be paused or migrated to
some other server which is free. This can incur the cost
as the promise time of the task j completion is changed.
For each job j, Cj is the job completion time, Ci is the
completion time of the available tasks, Wj is the wait
time.
Wj=Ci-Cj (8)

D. Algorithm Functions
The algorithm function for all the task entered the
server. Some of them completed and some are still
under execution.
 �(�) ≤ �(�(�) (9)

Where c is the completion time and a is the all tasks or
jobs has entered the server or either completed or under
service at the time. π is a scheduling policy.

��� =
 !"

#$%&'("

 (10)

As the job will arrive for the execution, the execution
time ETi of the job can be easily calculated using the
length of cloudlet (LCi) and MIPS rating of each virtual
machines available for the compilation. If the selected

virtual machine is idle, the process will be allocated to it.
Otherwise the process will wait in queue. The waiting
time in queue (Qct) will be calculated using the following
equations.
)�*+ = ,-�� − Timestamp�7 (11)

)�*� = ,)�*��� + �����7i>2 (12)

Jobs are coming in FCFS basis to the scheduler, but all
the virtual machines are busy executing their assigned
jobs, in that scenario the scheduler will examine the job
and find out the earliest completion of the job on the
specific virtual machine. The Qct2 represents the waiting
time for the first task in queue. The job will wait in the
queue for its execution. Qcti represents the waiting time
for the other tasks excluding first task in the queue.
Timestamp is required to find out the system time on
which the job will be complete. To find the completion
time CTi, it is must to find execution time (ETi), queue
time (QTi) and the timestamp. This will output the
estimate completion time of the processes running on
one virtual machine.
Minimum completion time (MCTi) is required to be find
from all the completion time calculated on each virtual
machine.

IV. PSEUDOCODE

Algorithm 1: Cloudlet Scheduling without Migration
Identify the time when VM is ready
for j from 0 by 1 to getVMCretedList-1 do
{
 ReadyTimeVM[j]=system.clock
}
//Identify the MIPS of all VM’s
for I from 0 to 1 getVMList-1 do
{
 VM_MIPS[j]=VMj.MIPS
}
sort “VM_MIPS” array into descending order for the first
time.
//Identify the completion time of submitted cloudlet from
VM_MIPS of all VMs
for i from 0 by 1 getCloudletListSize-1
{
 for j from 0 by 1 to getVMList
 {
 //Execution time of Ci on VMj
 ETi=lengthofCi/VM_MIPSi
 //Queue Time of VM
 qCTij=Timestampj+Wj
 //Completion time of Ci on VMj
 CTij=ETij+qCTij+TimeStampVM(i)
//Find Minimum Completion Time(MCT) of Ci
 MCT=Min(CTij)
//Find the lowest MCT from all the VM and assign the
cloudlet
 if(VM==idle)
 {
 setVM=getVmsCreatedList.get(vmid)

 (13)

 (14)
MCT: = Min,CT:7

CT: = ,ET: + Qct: + timetamp:7

Kumar & Kumar International Journal on Emerging Technologies 11(3): 417-421(2020) 420

 setCloudlet=setVM(vm.getvmid)
 }
 else
 {
 vm.queue();

setVM=getVmsCreatedList.get(vmid)
 setCloudlet=setVM(vm.getvmid)
 }
 SendNow ()
 //cloudlet submitted
}
}
//Remove all the assigned cloudlets from the cloudlet list

V. IMPLEMENTATION

A. CloudSim Simulation Environment

The CloudSim toolkit used to simulate the scheduling
algorithm. The configuration details are as below.

B. VM Configuration
long size = 10000; //image size (MB)
int RAM = 512; //vm memory (MB)
int mips = 1000;
long bw = 1000;
int pesNumber = 1; //number of cpus
String vmm = "Xen"; //VMM name

C. Cloudlet Configuration
long length=1000;
 long fileSize = 300;
 long outputSize = 300;
 int pesNumber = 1;

Table 1: Comparison of MCTN Algorithm with Existing Algorithms.

No. of
Machines

No. of Cloudlets
FCFS
(ms)

SJF
(ms)

RR
(ms)

Min-Min
(ms)

MCTN
(ms)

4

600 296.48 298.16 289.99 219.65 196

700 339.24 341.45 331.65 253.33 229.77

800 382.57 384.36 373.31 282.5 261.89

900 425.76 427.6 414.97 316.23 294.02

1000 469.09 470.52 456.58 348.69 327.67

Graph 1: Comparison of MCTN Algorithm with Existing Algorithms.

D. Host Configuration
int RAM = 2048; //host memory (MB)
 long storage = 1000000; //host storage
 int bw = 10000;
 String arch = "x86";
 String os = "Linux";
 String vmm = "Xen";
 double time_zone = 10.0;
 double cost = 3.0;
 double costPerMem = 0.05;
 double costPerStorage = 0.1;
 double costPerBw = 0.1;

VI. RESULTS

The comparison of the other scheduling algorithms with
the proposed MCTN algorithm has been done. All the

scheduling algorithm have been tested in the above
cloud configuration. The four pre-existing scheduling
algorithms are FCFS, RR, SJF, MIN-MIN are used for
comparison. Makespan is a parameter is an important
factor for optimization factors [12], result analysis of the
algorithm is tested on makespan parameter.
Mashuqur Rahman et al., has also compared the
proposed algorithm with RR, Min-Min and Max-Min
claimed to have reduced makespan in the proposed
algorithm in comparison to only with Min-Min algorithm
and has taken 7 task to be executed with 4 virtual
machines [14].
The algorithm here is tested on the varying load of
cloudlets from 600 to 1000 cloudlets on four virtual
machines. The shortest job first (SJF) algorithm has
took the maximum time (in ms) 296.48ms to complete

0

100

200

300

400

500

600 700 800 900 1000

T
im

e
 (
m

s
)

Cloudlets

Comparision Chart

FCFS SJF RR MinMin MCTN

Kumar & Kumar International Journal on Emerging Technologies 11(3): 417-421(2020) 421

600 cloudlets and took 470.52ms for1000 cloudlets. The
round-robin (RR) and first come first serve (FCFS) both
algorithms did complete quite well by taking 289.99ms
and 296.48ms for 600 cloudlets respectively
comparatively to SJF and perform well but it failed to
beat the Min-Min algorithm which took 219ms for 600
cloudlet and 348.69ms for 1000 cloudlets for the
execution. The proposed algorithm MCTN performs
much better by just taking 196ms for 600 cloudlets and
took 327ms for the 1000 cloudlets. MCTN utilizes all the
available machine from the cloud’s heterogeneous
environment for the execution of the tasks, and differs in
capability of execution, but still algorithm confirms the
use of all the available machine. The results show that
the existing algorithm is not designed for the
heterogeneous environment and thus taking more time
to execute the task. For the environment like cloud it is
must to design the algorithm specifically for the
environment for the efficient use of the resources.

VII. CONCLUSION

Cloudlets are assigned to the virtual machine which will
execute the task in the lowest completion system time. It
is not mandatory to choose the fastest virtual machines
always, it has been seen that lowest capable machine is
also giving the less completion time in some cases.
Thus, algorithm confirm the use of all the machines
regardless of its performance metrics. It commits to use
the maximum optimal resource utilization. In this
algorithm the completion time includes all the available
parameters like as timestamp, wait time of the cloudlets
or the complete queue time etc. Execution results are
showing the significant improvement in the execution
time.

VIII. FUTURE SCOPE

In future the work can be carried towards the virtual
machine migration policy which will enhance the
efficiency. The future work can also include the AI
engine, to learn the pattern at the runtime of usages in
respective environment to provide the better results for
specific set of requirements. It can also extend to the
deadline-based task assignment.

REFERENCES

[1]. Sotiriadis, S., Bessis, N., Amza, C., & Buyya, R.
(2016). Vertical and horizontal elasticity for dynamic
virtual machine reconfiguration. IEEE Transactions on
Services Computing, 1-14.
[2]. Basmadjian, R., De Meer, H., Lent, R., & Giuliani, G.
(2012). Cloud computing and its interest in saving
energy: the use case of a private cloud. Journal of

Cloud Computing: Advances, Systems and
Applications, 1(1), 1-25.
[3]. Li, J., Peng, J., Lei, Z., & Zhang, W. (2011). An
energy-efficient scheduling approach based on private
clouds. Journal of Information &computational
Science, 8(4), 716-724.
[4]. Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job
scheduling algorithm based on Berger model in cloud
environment. Advances in Engineering Software, 42(7),
419-425.
[5]. Dakshayini, D. M., & Guruprasad, D. H. (2011). An
optimal model for priority based service scheduling
policy for cloud computing environment. International
journal of computer applications, 32(9), 23-29.
[6]. Delavar, A. G., Javanmard, M., Shabestari, M. B., &
Talebi, M. K. (2012). RSDC (reliable scheduling
distributed in cloud computing). International Journal of
Computer Science, Engineering and Applications, 2(3),
1-16.
[7]. Mei, J., Li, K., & Li, K. (2014). A resource-aware
scheduling algorithm with reduced task duplication on
heterogeneous computing systems. The Journal of
Supercomputing, 68(3), 1347-1377.
[8]. Chen, H., Wang, F., Helian, N., & Akanmu, G.
(2013). User-priority guided Min-Min scheduling
algorithm for load balancing in cloud computing. In 2013
national conference on parallel computing technologies
(PARCOMPTECH), 1-8.
[9]. Devipriya, S., & Ramesh, C. (2013). Improved Max-
min heuristic model for task scheduling in cloud. In 2013
International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE),
883-888.
[10]. Wang, W., Zeng, G., Tang, D., & Yao, J. (2012).
Cloud-DLS: Dynamic trusted scheduling for Cloud
computing. Expert Systems with Applications, 39(3),
2321-2329.
[11]. Singh, V., Gupta, I., & Jana, P. K. (2019). An
Energy Efficient Algorithm for Workflow Scheduling in
IaaS Cloud. Journal of Grid Computing, 1-20.
[12]. Krishnadoss, P., & Jacob, P. (2018). OCSA: Task
scheduling algorithm in cloud computing
environment. International Journal of Intelligent
Engineering and Systems, 11(3), 271-279.
[13]. Wang, S., Li, Y., Pang, S., Lu, Q., Wang, S., &
Zhao, J. (2020). A Task Scheduling Strategy in Edge-
Cloud Collaborative Scenario Based on
Deadline. Scientific Programming, 1-9.
[14]. Mashuqur Rahman, A K M, Aslam Uddin, K. M.,
Arbe, N., Jahan, L. and Md Whaiduzzaman (2019).
Dynamic task scheduling algorithms in cloud computing.
Proc. 3rd Int. Conf. Electron. Commun. Aerosp.
Technol. ICECA 2019, 1280–1286.

How to cite this article: Kumar, N.

and Kumar, R. (2020). Scheduling of Tasks (Cloudlets) in Heterogeneous
Processing Cloud Environment. International Journal on Emerging Technologies, 11(3): 417–421.

